Какой ток в usb компьютера?

Как избежать повреждения USB-порта —

Какой ток в usb компьютера?

   Часто производители ноутбуков, а затем и продавцы, реализующие эти изделия, дают приличную гарантию на предлагаемое «железо» с одной лишь оговоркой: гарантия не распространяется на USB-порты.

Почему? Надо полагать, потому, что это самое уязвимое место компьютера, и неопытные пользователи, которых большинство, в результате неправильной эксплуатации интерфейса USB, могут легко его повредить. Конечно, разработчики борются с этой проблемой и в разных моделях ноутбуков применяют различные защитные меры.

Но, пока проблема окончательно не решилась и чтобы избежать неприятностей, пользователям рекомендуется придерживаться определенных правил. То же самое относится и к стационарным компьютерам.

   Все неудачи использования USB-порта можно разделить на программные и аппаратные, то есть физические.

Программные отказы устраняются легче. По крайней мере, они не потребуют материальных затрат, хотя могут занять достаточное время. В данном случае, может потребоваться обновление или подбор драйвера, настройка BIOS, а в трудных случаях – переустановка операционной системы.

Физические неисправности потребуют разборку компьютера, поиск и замену перегоревших деталей, и самое неприятное – замену дорогостоящей микросхемы-контроллера, с чем может справиться только специалист сервисного центра.

Энергетические параметры USB

   Самым распространенным вариантом на сегодняшний день являются встроенные в компьютерную технику разъемы USB 2.0. Реже попадаются версии USB 1.1, с которых и началось широкое внедрение этого типа интерфейса в конце прошлого века. Более совершенный USB 2.0 начал применяться с 2000 года, начиная с 2008 года, увидел свет USB 3.0.

Рассмотрим только энергетические параметры распространенных портов.    Порт USB версии 2.0, как и более новой версии 3.0, имеет специальные контакты, на которые выведено напряжение 5 В. Это напряжение обычно используется для питания подключаемых к компьютеру внешних устройств, управляемых через порт, а также как источник питания постоянного тока.

Такой источник может питать USB-фонарик, небольшую аудиосистему или служить для зарядки аккумулятора мобильного телефона.

   Однако энергетические возможности порта не безграничны. Стандартное значение тока, который он может обеспечить, составляет следующую величину. Для порта USB 2.0 выходной ток не может превышать значения 500 мА, для версии USB 3.0 – 900 мА.

Когда возникает небольшая перегрузка, это приводит к просадке напряжения, что может вызвать сбой в работе подключаемого устройства. Если перегрузка увеличивается, напряжение уменьшается еще больше. При этом о работе устройства уже говорить не приходится, а сам порт может выйти из строя в результате сильного перегрева элементов схемы.

Тем более, непоправимый вред может нанести короткое замыкание шин питания, которое вызовет перегорание защитных элементов порта.

Что и как подключают к разъему USB 2.0

   В каждом компьютере может быть установлено от 2 до 6 портов USB, а по спецзаказу и того больше. Все, что подключается к каждому из них, не должно потреблять ток более чем 500 мА. Этим гарантируется нормальная работа устройств и сохранение работоспособности самого порта.

Маломощные и исправные нагрузки, вроде флешек, мыши, клавиатуры или web-камеры, не могут причинить интерфейсу вреда. К мощным нагрузкам следует относиться со вниманием.    Примером мощной нагрузки может служить внешний жесткий диск и другие устройства с потребляемым током 500 и более миллиампер.

Часто такие девайсы снабжаются двумя разъемами, соединенными параллельно, чтобы использовать для их подключения два разных порта USB 2.0. Нагрузочная способность данного способа питания увеличится до 1000 мА. Иногда внешнее устройство имеет собственный источник питания, тогда электрическая энергия порта не расходуется вовсе, и он будет функционировать в облегченном режиме.

   Все, о чем говорилось здесь относительно порта USB 2.0, справедливо и для его варианта 3.0 с той лишь разницей, что вместо максимального нагрузочного тока 500 мА, он имеет ограничение в 900 мА.

Ошибки при подключении мощных нагрузок

   Одна из ошибок заключается в следующем. Допустим, подключаемое устройство (внешний жесткий диск) имеет два спаренных разъема USB. Один из них основной, имеющий линию питания и линию данных, другой – дополнительный, снабженный только проводниками для питания.

Часто потребитель, по неопытности или забывчивости, может задействовать только один основной разъем, оставив дополнительный разъем неподключенным. Если устройство потребляет ток 800 мА, то оно перегрузит порт USB 2.0, отчего он выйдет из строя.

   Похожая ситуация может возникнуть, когда пользователь использует пассивный разветвитель интерфейса USB – приспособления, увеличивающего количество гнезд USB.

Такое приспособление рассчитано на подключение соответствующего количества маломощных нагрузок и никак не может увеличить максимальный ток исходного порта. Если потребитель этого не понял и посредством мощных нагрузок допустил перегрузку, то следует ожидать неприятностей.

Последствия выхода из строя порта от перегрузки

   Чтобы перегрузка или короткое замыкание питающей шины порта USB не привели к более серьезной поломке компьютера, разработчики встраивают специальные средства защиты. Например, плавкий предохранитель, ограничивающий ток резистор, самовосстанавливающийся предохранитель. В каждом случае последствия могут быть разными.

   Если сгорает плавкий предохранитель, то питающие шины порта отключаются, и он становиться неработоспособным.

При перегрузке ограничивающего резистора (как правило, это чип SMD), он сильно разогревается, часть его резистивного слоя сгорает, отчего сопротивление увеличивается, следовательно, нагрузочный ток еще более уменьшается. Такой «поджаренный» порт сможет функционировать только с маломощными нагрузками.

   Если в схему встроен самовосстанавливающийся предохранитель, то после снятия чрезмерной нагрузки работоспособность порта будет автоматически восстановлена. В иных случаях потребуется разборка компьютера и замена элементов, вышедших из строя.

Напомним, что специалисты «Serty-Service» готовы помочь

если у вас возникли проблемы с USB устройствами. 

Источник: https://serty.ru/info/articles/kompyutery/Kak-izbezhat-povrezhdeniya-USB-porta/

Сколько вольт выдает USB выход компьютера? Какое напряжение на usb выходе

Какой ток в usb компьютера?

НапряжениеКакое напряжение на usb выходе

  • 5 (пять) вольт. Причем ток ограничен 500мА. Изменить ничего нельзя. Это напряжение стандартное, используется в компе и для других целей. Оно жестко стабилизируется цепями (внутренними) в блоке питания. Выходы сразу с нескольких разъемов можно запараллелить. Это делается для повышения максимального допустимого тока, например, для подключения внешних винчестеров 2,5quot;.

  • Стандарт идет на пять вольт, а отдаваемый шиной ток 500 мА.

    В современных моделях ноутбуков отдаваемый ток до 1000 мА на один порт и выше. Те порты USB, выдающие 5 Вт имеют название quot;Powered USBquot;.

    Очень интересная информация о важных параметрах здесь.

  • На любой из разъмов USB в любом компьютере выводится напряжение в 5 вольт

    Читайте также  Как оценить работу компьютера?

    Только сами разъмы USB имеют отличия в подключении (форме) а соответственно и напруга находится на разных пинах разъмов. Вот распиновка некоторых видов:

  • Напряжение подаваемое через usb-разъем составляет около пяти Вольт. С помощью этого разъема можно заряжать свой мобильный телефон, но нельзя его использовать для всевозможных испытаний разнообразной техники.

  • По идее, при распознавании устройства, подключнного через USB к компьютеру, для его зарядки податся именно то напряжение которое нужно. Подключнный аппарат сам сообщает соответствующим службам и узлам компьютера необходимые параметры питания, зарядки, передачи данных и так далее.

  • По идеи 5 вольт но бывают 3 и 4 вольт или превышать

  • На USB разъеме напряжение 5 вольт. Часто 5 вольт с, так называемого, дежурного канала. Я так понимаю, вам нужна распиновка разъема. Вот она:

    Исходя из схемы, вам нужны контакты 1 и 4. С них вы снимите питание. Кстати, подогревать кружку я бы все-таки не советовал. Не такой уж мощный выход USB. Можно и спалить.

    И еще. Раз вы спрашиваете, подозреваю, что вы никогда с этим не сталкивались. Мой вам совет, не лезте туда от греха…

    Источник: https://xn----7sbeb3bupph.xn--p1ai/napryazhenie/kakoe-napryazhenie-na-usb-vyhode.html

    USB-тестеры и скорость зарядки

    Какой ток в usb компьютера?

    Из чистого любопытства заказал пару USB-тестеров с eBay (которых там видимо-невидимо).

    Для справки: USB-тестер (USB voltage and current tester) — устройство для измерения напряжения и тока, поступающего с USB-порта в какой-либо гаджет, чаще всего от этого порта заряжаемый.

    На фото выше — две различные модели, оказавшиеся в моём распоряжении. Нетрудно заметить, что выглядят они как обычные USB-накопители (в простонародье «флешки»), за исключением USB-выхода на торце. Чтобы определить параметры энергопотребления гаджета, нужно включить эту «флешку» между ним и USB-портом.

    Официального названия эти изделия китайского электропрома не имеют, лишь тот, что справа, маркирован маловразумительной надписью Keweisi. Так что именовать своих подопытных буду «Модель №1» и «Модель №2».

    Модель №1

    Модель №1 совсем простая, и обошлась она в пару евро с учётом пересылки. Она снабжена 4-разрядным светодиодным индикатором, который попеременно, с интервалом примерно в 4 секунды, показывает напряжение в вольтах:

    И ток в амперах:

    Характеристики

    • Входное напряжение: 3­…8 В
    • Ток: 0…3 А
    • Разрешающая способность по напряжению: 10 мВ
    • Разрешающая способность по току: 10 мА
    • Погрешность по напряжению: ≤ 1%
    • Погрешность по току: ≤ 2%
    • Максимальное падение напряжения: 200 мВ

    Модель №2

    Модель №2 — более продвинутая и стоила уже около пяти евро (тоже с учётом пересылки). В ней ЖК-дисплей с приятной белой подсветкой, отображающий сразу четыре параметра: напряжение, ток, время заряда (часы:минуты) и заряд:

    Счётчик времени увеличивается только в процессе заряда.

    Сравнение тестеров: напряжение

    Попробуем поэкспериментировать с нашими подопытными, чтобы понять насколько им можно доверять.

    Начнём со сравнения показаний напряжения — для обоих заявлена погрешность не более 1%, что для 5 вольт составляет 50 мВ.

    Нетрудно заметить, что показания отличаются больше, чем на 0,05 В (5,29 vs. 5,22). Мультиметр сообщает, что истина, как всегда, где-то посередине:

    Так что оба устройства, строго говоря, вписываются в вилку ±50 мВ.

    Сравнение тестеров: ток

    Теперь сравним показания тока. На предыдущем фото можно заметить, что модель №1 сама потребляет около 10 мА. Если поменять их местами, то первая модель вообще не обнаруживает ток, потребляемый второй (видимо, он меньше 10 мА):

    Будем учитывать это при сравнении их показаний.

    Итак, подключаем нагрузку, в качестве которой выступает телефон Samsung Galaxy Note 4, к источнику питания (адаптер от Apple iPad, максимальный выходной ток 2 А):

    Показания слегка различаются. Самое любопытное, что, если поменять тестеры местами, ток заметно падает:

    При этом показания модели №1 стабильно ниже. Впрочем, разница не столь велика.

    Ещё один любопытный эксперимент: заменим блок питания на китайский «4-в-1», максимальный выходной ток 2,1 А. Ток возрастает:

    В этот раз показания очень близки, а если учесть ток, потребляемый тестером справа, так и вообще идентичные. Тест можно считать пройденным.

    Дальше я буду использовать тестер №2, как более продвинутый. Кроме того, он может работать от напряжения до 9 вольт (первый только до 8) — и это нам пригодится.

    Сравнения адаптеров и USB-кабелей

    Настало время продемонстрировать практическую пользу от этих приборчиков с кучей цифр.

    Адаптер Apple iPad на 2 А

    С одним-единственным тестером эппловский адаптер отдаёт 1,57 ампера, напряжение при этом проседает до 4,97 В:

    В общем, ток он отдаёт нехотя, и полный свой потенциал может раскрыть лишь с одноимёнными устройствами.

    Адаптер ноунейм на 2,1 А

    Китайский четырёхпортовик, напротив, демократичен и добросовестно работает с чем угодно. И сейчас я продемонстрирую, что от выбора USB-кабеля ток (т.е. скорость) зарядки зависит не меньше, а порой и больше.

    Родной качественный самсунговский кабель от Galaxy Note 4, длина около метра:

    Подключаем телефон — ток заряда 1,74 ампера:

    Неродной, но добротный кабель Hema длиной два метра — ток падает до 1,22 А:

    Совсем неродной, очень китайский, но чертовски удобный Muvit Retractable Micro USB, длина в растянутом виде около 70 см:

    С ним ток падает ещё сильнее, до 1,11 А:

    Столь же китайский, тоже очень удобный, но уже совершенно безымянный суперкомпакт длиною 20 см. Стоят они на том же Ибее пару евро за пучок, а фишка в том, что его концы примагничиваются друг к другу:

    А теперь сюрприз — ток заряда с ним точно такой же, как и с оригинальным, 1,74 А:

    Но основной сюрприз впереди. Совершенный и окончательный китайский ноунейм, прибывший с каким-то копеечным гаджетом — кабель Micro USB длиной около полуметра, на вид совершенно обычный. Но внешность, как выяснилось, обманчива: ток заряда с ним падает до 220 мА, то есть почти в восемь раз!

    Телефон через это чудесное изделие будет заряжаться, соответственно, в восемь раз дольше. Такие дела.

    Теперь проверим одновременную зарядку двух устройств. Суммарный ток даже слегка превысил обещанные 2,1 А:

    Активный USB-хаб

    В результате экспериментов выше можно вполне считать магнитный кабель-коротышку референсным.

    Заменим адаптер на активный USB-хаб (оснащённый двухамперным блоком питания):

    С нашим референсным розовым шнурком ток падает почти вдвое. Модель №1 с этим согласна:

    Адаптер Samsung Galaxy Note 4

    Теперь самое экзотичное. Последний писк моды, адаптер от Samsung Galaxy Note 4 (макс. выходной ток 2,1 А), украшенный надписью Adaptive Fast Charging, на вид похож на миллион других USB-адаптеров, и на холостом ходу выдаёт ожидаемые 5 вольт.

    Однако если к нему подключить именно тот девайс, для которого он предназначен, то он ВНЕЗАПНО начинает выдавать напряжение 9 вольт!

    Ток при этом почти такой же, соответственно, аккумулятор должен заряжаться почти вдвое быстрее. Остаётся надеяться, что схема адаптивной зарядки не ошибается в выборе напряжения и для других устройств будет выдавать нормальные пять вольт.

    Судя по всему, самсунговцы засунули в него ещё и немаленький конденсатор, поскольку, отключенный от сети, он ещё продолжает питать тестер с полминуты:

    Выводы

    Мои выводы таковы:

    1. Тестеры и адаптеры китайцы научились делать неплохо.
    2. USB-кабели (они почти всегда китайские) бывают очень разные.
    3. При прочих равных длинный и/или тонкий кабель снижает скорость зарядки.
    4. Единственный надёжный способ подобрать оптимальные адаптер и кабель — использовать USB-тестер.
    5. Адаптеры Samsung — зверские устройства.
    6. Эппл не нужен.
    Читайте также  Как удалить программу avast с компьютера?

    Источник: https://yktoo.com/ru/blog/post/251

    USB 2.0 Распайка и характеристики

    Какой ток в usb компьютера?

    USB (Universal Serial Bus — «универсальная последовательная шина») — последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств.

    Для подключения используется 4-х проводный кабель, при этом два провода используются для приёма и передачи данных, а 2 провода — для питания периферийного устройства.

    Благодаря встроенным линиям питания USB позволяет подключать периферийные устройства без собственного источника питания.

    Основные сведения

    Кабель USB состоит из 4 медных проводников — 2 проводника питания и 2 проводника данных в витой паре, и заземленной оплётки (экрана).

    Кабели USB имеют физически разные наконечники «к устройству» и «к хосту». Возможна реализация USB устройства без кабеля, со встроенным в корпус наконечником «к хосту». Возможно и неразъёмное встраивание кабеля в устройство (например, USB-клавиатура, Web-камера, USB-мышь), хотя стандарт запрещает это для устройств full и high speed.

    Шина USB строго ориентирована, т. е. имеет понятие «главное устройство» (хост, он же USB контроллер, обычно встроен в микросхему южного моста на материнской плате) и «периферийные устройства».

    Устройства могут получать питание +5 В от шины, но могут и требовать внешний источник питания. Поддерживается и дежурный режим для устройств и разветвителей по команде с шины со снятием основного питания при сохранении дежурного питания и включением по команде с шины.

    USB поддерживает «горячее» подключение и отключение устройств. Это возможно благодаря увеличения длинны проводника заземляющего контакта по отношению к сигнальным.

    При подключении разъёма USB первыми замыкаются заземляющие контакты, потенциалы корпусов двух устройств становятся равны и дальнейшее соединение сигнальных проводников не приводит к перенапряжениям, даже если устройства питаются от разных фаз силовой трёхфазной сети.

    На логическом уровне устройство USB поддерживает транзакции приема и передачи данных. Каждый пакет каждой транзакции содержит в себе номер оконечной точки (endpoint) на устройстве.

    При подключении устройства драйверы в ядре ОС читают с устройства список оконечных точек и создают управляющие структуры данных для общения с каждой оконечной точкой устройства.

    Совокупность оконечной точки и структур данных в ядре ОС называется каналом (pipe).

    Оконечные точки, а значит, и каналы, относятся к одному из 4 классов:

    1) поточный (bulk),

    2) управляющий (control),

    3) изохронный (isoch),

    4) прерывание (interrupt).

    Низкоскоростные устройства, такие, как мышь, не могут иметь изохронные и поточные каналы.

    Управляющий канал предназначен для обмена с устройством короткими пакетами «вопрос-ответ». Любое устройство имеет управляющий канал 0, который позволяет программному обеспечению ОС прочитать краткую информацию об устройстве, в том числе коды производителя и модели, используемые для выбора драйвера, и список других оконечных точек.

    Канал прерывания позволяет доставлять короткие пакеты и в том, и в другом направлении, без получения на них ответа/подтверждения, но с гарантией времени доставки — пакет будет доставлен не позже, чем через N миллисекунд. Например, используется в устройствах ввода (клавиатуры, мыши или джойстики).

    Изохронный канал позволяет доставлять пакеты без гарантии доставки и без ответов/подтверждений, но с гарантированной скоростью доставки в N пакетов на один период шины (1 КГц у low и full speed, 8 КГц у high speed). Используется для передачи аудио- и видеоинформации.

    Поточный канал дает гарантию доставки каждого пакета, поддерживает автоматическую приостановку передачи данных по нежеланию устройства (переполнение или опустошение буфера), но не дает гарантий скорости и задержки доставки. Используется, например, в принтерах и сканерах.

    Время шины делится на периоды, в начале периода контроллер передает всей шине пакет «начало периода». Далее в течение периода передаются пакеты прерываний, потом изохронные в требуемом количестве, в оставшееся время в периоде передаются управляющие пакеты и в последнюю очередь поточные.

    Активной стороной шины всегда является контроллер, передача пакета данных от устройства к контроллеру реализована как короткий вопрос контроллера и длинный, содержащий данные, ответ устройства.

    Расписание движения пакетов для каждого периода шины создается совместным усилием аппаратуры контроллера и ПО драйвера, для этого многие контроллеры используют Прямой доступ к памяти DMA (Direct Memory Access) — режим обмена данными между устройствами или же между устройством и основной памятью, без участия Центрального Процессора (ЦП). В результате скорость передачи увеличивается, так как данные не пересылаются в ЦП и обратно.

    Размер пакета для оконечной точки есть вшитая в таблицу оконечных точек устройства константа, изменению не подлежит. Он выбирается разработчиком устройства из числа тех, что поддерживаются стандартом USB.

    Возможности USB:

    — Высокая скорость обмена (full-speed signaling bit rate) — 12 Мб/с
    — Максимальная длина кабеля для высокой скорости обмена — 5 м
    — Низкая скорость обмена (low-speed signaling bit rate) — 1.

    5 Мб/с
    — Максимальная длина кабеля для низкой скорости обмена — 3 м
    — Максимум подключенных устройств (включая размножители) — 127
    — Возможно подключение устройств с различными скоростями обмена
    — Отсутствие необходимости в установке пользователем дополнительных элементов, таких как терминаторы для SCSI
    — Напряжение питания для периферийных устройств — 5 В
    — Максимальный ток потребления на одно устройство — 500 mA

    Распайка разъема USB 1.1 и 2.0

    Разъем USB — серия «А» Предназначен только для подключения к источнику, т. е. к компьютеру или хабу Разъем USB — серия «В» Предназначены только для подключенияк периферийному устройству

    Сигналы USB передаются по двум проводам экранированного четырёхпроводного кабеля.

    Номер контакта Обозначение Цвет провода
    1 VBUS Красный
    2 D- Белый
    3 D+ Зелёный
    4 GND Чёрный

    Здесь:

    GND — цепь «корпуса» для питания периферийных устройств
    V BUS — +5V также для цепей питания
    Шина D+ предназначена для передачи данных

    Шина D- для приема данных.

    Недостатки USB 2.0

    Хотя максимальная скорость передачи данных USB 2.0 составляет 480 Мбит/с (60 Мбайт/с), в реальной жизни достичь таких скоростей нереально (~33,5 Мбайт/сек на практике). Это объясняется большими задержками шины USB между запросом на передачу данных и собственно началом передачи.

    Например, шина FireWire, хотя и обладает меньшей пиковой пропускной способностью 400 Мбит/с, что на 80 Мбит/с (10 Мбайт/с) меньше, чем у USB 2.0, в реальности позволяет обеспечить бо́льшую пропускную способность для обмена данными с жёсткими дисками и другими устройствами хранения информации.

    В связи с этим разнообразные мобильные накопители уже давно «упираются» в недостаточную практическую пропускную способность USB 2.0.

    Источник: http://compsovet.com/stati/kompjuternaja-tehnika/raznoe/70-usb-20-raspajka-i-harakteristiki.html

    Зарядка аккумуляторных батарей через USB порт

    Какой ток в usb компьютера?
    Категория: Поддержка по зарядным устройствам 11.05.2016 11:32 Abramova Olesya

    USB (Universal Serial Bus — с англ. «универсальная последовательная шина») — последовательный интерфейс передачи данных, который был введен в 1996 году и стал одним из самых удобных и распространенных интерфейсов для электронных устройств.

    В его развитие внесли свой вклад такие компании как Compaq, DEC, IBM, Intel, NEC и Nortel. Разработка USB позволила упростить взаимосвязь периферийных устройств и ПК, а также обеспечить большую скорость передачи данных, чем это было возможно с более ранними интерфейсами.

    Порт USB также может быть использован для зарядки устройств, но с ограничением силы тока в 500 мА в начальных спецификациях, позже сила тока возросла до 5 А.

    Стандартная схема подключения через USB состоит из хоста, чаще всего это компьютер, и периферийного устройства, такого как принтер, смартфон или камера. Поток данных происходит в обоих направлениях, а электропитание всегда однонаправленное, и протекает от хоста к устройству. Хост не может получать электропитание от внешнего источника.

    Читайте также  Как отключить рекламу на рабочем столе компьютера?

    USB 1.0 и 2.0 имеют напряжение 5 В и силу тока 500 мА (USB 3.0 имеет 900 мА), что позволяет производить зарядку небольшого одноэлементного литий-ионного аккумулятора.

    Существует, однако, опасность перегрузки USB концентратора при подключении к нему слишком большого количества устройств. Зарядка устройства, которое потребляет 500 мА вкупе с другими нагрузками, приведет к падению напряжения и возможному отказу системы.

    Для предотвращения перегрузок некоторые хосты могут включать в себя специальные токоограничивающие механизмы, которые предотвращают коллапс системы.

    С помощью стандартного USB порта можно зарядить только небольшой одноэлементный литий-ионный аккумулятор. Зарядка 3,6 В аккумулятора стартует применением постоянного тока с пиковым значением напряжения 4,2 В; далее следует постепенное снижение зарядного тока и напряжения.

    (Смотрите BU-409: Зарядка литий-ионных аккумуляторов). Из-за падения напряжения в кабеле и разъемах, составляющее примерно 350 мВ, и потерь в цепи зарядки, 5 В USB порта может оказаться недостаточно для полной зарядки аккумулятора.

    Но это не особо значительная проблема, так как аккумулятор в любом случае зарядится примерно до 70 процентов, хотя по времени автономной работы и будет уступать заряженному с режимом насыщения.

    Но хоть время автономной работы и будет меньше, такой недозаряд увеличивает общую долговечность литий-ионного аккумулятора.

    Два типа USB разъемов — тип А и тип В, показанные на рисунке 1, имеют по четыре контакта (pin). Pin 1 и pin 4 отвечают за обеспечение электропитания напряжением 5 В, а pin 2 и pin 3, также обозначаемые как D+ и D-, отвечают за перенос данных.

    Рисунок 1: Конфигурация контактов (pin) на USB разъеме типа А и В. Pin 1 — напряжение 5 В (красный провод), pin 4 — “земля” (черный провод). Корпус соединяется с “землей” и обеспечивает защиту. Pin 2 (D-, белый провод) и pin 3 (D+, зеленый провод) отвечают за перенос данных.

    Помимо стандартных разъемов типа А и В с четырьмя контактами существуют форматы Mini-A, Mini-B, Micro-A и Micro-B, которые имеют специальный согласующий контакт, помогающий обнаружить, с какого конца провода находится хост, а с какого – периферийное устройство.

    Pin 1 и pin 4 по умолчанию во всех форматах являются отвечающими за электропитание. Как правило, все USB кабели имеют тип А на одном конце и тип В на другом (или Mini-A и Mini-B и т. д.).

    Развитие USB не стоит на месте — уже существует новый разъем типа С, имеющий целых 24 контакта и отвечающий спецификациям USB 3.1.

    Мощностные характеристики

    Зарядка производительного смартфона или планшета посредством USB 2.0 имеет некоторые ограничения.

    Может возникнуть ситуация, когда при одновременной эксплуатации и зарядке устройства, эффект от зарядки будет отсутствовать ввиду превышения разрядных мощностей над зарядными.

    Существуют также такие устройства, например, внешние подключаемые жесткие диски, для электропитания которых мощности USB в 500 мА мало, и будет требоваться дополнительное подключение источника питания.

    В 2009 году была введена спецификация USB 3.0, в которых мощность порта была повышена до 900 мА. Может показаться, что и этот показатель мощности не особо велик, но разработчикам пришлось ограничивать его, так как при больших значениях возникали бы искажения при высокоскоростной передаче данных.

    Необходимость обеспечения большей мощности привела к созданию в 2007 году отдельной спецификации — Battery Charging, позволяющей более быструю зарядку от USB-хоста.

    Суть заключалась в создании зарядного устройства, известного сейчас как “USB зарядка”, которое было бы способно обеспечить силу тока в 1500 мА и быть совместимым со стационарными электросетями и системой электрообеспечения автомобиля. В таких зарядных устройствах, по сути имеющих свой USB порт, контакты D- и D+ соединены друг с другом через сопротивление 200 Ом или меньше.

    Этот нюанс отличает их USB порт от оригинального, предназначенного для переноса данных. В некоторых гаджетах компании Apple зарядный ток может ограничиваться изменением сопротивления между контактами D- и D+.

    USB зарядное устройство может комплектоваться Y-образным кабелем, с помощью которого можно и заряжать устройство, и выполнять обмен данными.

    Это решение выглядит довольно логичным, но в спецификации соответствия USB говорится о запрете использования Y-образного кабеля периферийными устройствами — “если периферийное USB устройство требует больше энергии, чем допускает спецификация USB, к которому оно подсоединено, то у такого устройства должно быть автономное питание”. Но на практике Y-образные кабели и так называемые вспомогательные зарядные адаптеры используются без видимых трудностей.

    Может возникнуть вопрос — не приведет ли к повреждению устройства использование USB зарядного устройства с силой тока, большей номинальных 500 и 900 мА? Ответ будет отрицательным, так как устройство возьмет ровно столько энергии, сколько ему будет необходимо.

    Аналогией может служить пример подключения к розетке переменного тока лампочки и тостера. Будучи подключенными к одинаковому источнику электроэнергии, эти приборы, тем не менее, имеют разную мощность — лампочка – довольно небольшую, тогда как тостер довольно значительную.

    Большая мощность зарядного устройства USB в нашем случае даже позволит сократить время зарядки.

    Зарядка в спящем режиме

    В большинстве случаев выключение компьютера приводит и к отключению USB портов. Но в некоторых компьютерах реализована функция зарядки в спящем режиме, которая подразумевает сохранение напряжения на USB порту и при выключенном состоянии.

    Такие USB порты могут быть красного или желтого цвета, единого стандарта не существует. Разные компании могут называть эту функциональность по- своему, например Dell назвал свою технологию “PowerShare”, и такие USB порты отмечены значком молнии.

    Toshiba использует термин “USB Sleep-and-Charge” и маркирует такие порты аббревиатурой USB над рисунком батарейки.

    USB 3.1 — разъем типа С

    Как и большинство других успешных технологий, USB за время своего существования породил несколько версий разъемов и кабелей. USB зарядные устройства не всегда показывают ожидаемые результаты производительности и время зарядки может быть долгим. Существует и проблема несовместимости между конкурирующими системами, возникающая как случайно, так и осознанно.

    Компании, столкнувшиеся с проблематикой технологии USB, разработали свой собственный разъем и кабель, основанный на стандарте USB 3.1. Вместо использования четырех контактов, как в классических разъемах типа А и В, тип С имеет 24 контакта и является двусторонним, то есть у него нет разной геометрии разъемов для хоста и периферии.

    Разъем типа С поддерживает как и стандартные 900 мА, так и может обеспечить 1,5 А и даже 3,0 А через шину питания 5 В при потоковой передаче данных. Это приводит к возможности поддержания мощности 7,5 и 15 ватт соответственно, что несколько интереснее стандартных 2,5 ватт.

    Существуют дальнейшие усовершенствования типа С, экспериментально способные обеспечить силу тока 5 А при напряжении 12 В или 20 В (60 Вт и 100 Вт соответственно).

    Несмотря на присутствие на рынке устройств с USB-C и USB 3.1, потребители пока более ориентированны на USB 3.0. В то время как USB 3.1 обратно совместим с более старыми форматами, для USB-C необходимы специальные переходники и адаптеры, которые ограничивают скорость передачи данных.

    Последнее обновление 2016-02-25

    Источник: https://best-energy.com.ua/support/chargers/bu-411

  • Понравилась статья? Поделиться с друзьями:
    О компьютерах просто