Содержание
- 1 Виды электрических схем блока питания компьютера
- 1.1 Что это такое
- 1.2 Обзор схем источников питания
- 1.3 Простой импульсный БП
- 1.4 АТХ без коррекции коэффициента
- 1.5 АТХ с коррекцией коэффициента мощности
- 1.6 На двухканальном ШИМ-контролере
- 1.7 Схема подключения блока питания компьютера
- 1.8 Конструктивные особенности
- 1.9 Параметры и характеристики
- 1.10 Мощность – основной показатель
- 1.11 Рабочие напряжение
- 1.12 Советы по выбору источника
- 2 Блок питания для компьютера: принцип работы, принципиальная схема и проверка его работоспособности
- 3 А вы знаете — как устроен блок питания компьютера?
- 4 Устройство блока питания компьютера — Компьютерная техника
- 5 Блок питания компьютера: что это и какие функции выполняет
- 6 Как устроен блок питания для компьютера и из чего состоит?
Виды электрических схем блока питания компьютера
Работа любого компьютера невозможна без блока питания. Поэтому стоит отнестись серьезно к выбору. Ведь от стабильной и надежной работы БП будет зависеть работоспособность самого компьютера.
Что это такое
Главной задачей блока питания является преобразование переменного тока и дальнейшее формирование требуемого напряжения, для нормальной работы всех комплектующих ПК.
Напряжение, требуемое для работы комплектующих:
Кроме этих заявленных величин существует и дополнительное величины:
БП выполняет роль гальванической развязки между электрическим током из розетки и комплектующими потребляющие ток. Простой пример, если произошла утечка тока и человек дотронулся до корпуса системного блока его ударило бы током, но благодаря блоку питания этого не происходит. Часто используются источники питания (ИП) формата ATX.
Обзор схем источников питания
Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь. Работа преобразователей этого типа заключается в использовании двухтактного режима.
Стабилизация выходных параметров ИП осуществляется применением широтно-импульсной модуляции (ШИМ-контроллер) управляющих сигналов.
В импульсных источниках питания часто используется микросхема ШИМ-контроллера TL494, которая обладает рядом положительных свойств:
- приемлемые рабочие характеристики микросхемы. Это – малый пусковой ток, быстродействие;
- наличие универсальных внутренних элементов защиты;
- удобство использования.
Простой импульсный БП
Принцип работы обычного импульсного БП можно увидеть на фото.
Первый блок выполняет изменение переменного тока в постоянный. Преобразователь выполнен в виде диодного моста, который преобразовывает напряжение, и конденсатора, сглаживающего колебания.
Кроме этих элементов могут присутствовать еще дополнительные комплектующие: фильтр напряжения и термисторы. Но, из-за дороговизны, эти комплектующие могут отсутствовать.
Генератор создает импульсы с определенной частотой, которые питают обмотку трансформатора. Трансформатор выполняет главную работу в БП, это – гальваническая развязка и преобразование тока до требуемых величин.
Далее переменное напряжение, генерируемое трансформатором, идет на следующий блок. Этот блок из диодов, выравнивающих напряжение, и фильтра пульсаций. Фильтр состоит из группы конденсаторов и дросселя.
АТХ без коррекции коэффициента
Простой импульсный БП хоть и рабочее устройство, но на практике его использовать неудобно. Многие из его параметров на выходе «плавают», в том числе и напряжение. Все эти показатели изменяются из-за нестабильного напряжения, температуры и загруженности выхода преобразователя.
Но если осуществлять управление этими показателями с помощью контроллера, который будет выполнять роль стабилизатора и дополнительные функции, то схема будет вполне пригодной для применения.
Структурная схема БП с использованием контроллера широтно-импульсной модуляции проста и представляет генератор импульсов на ШИМ-контроллере.
ШИМ-контроллер регулирует амплитуду изменения сигналов проходящих через фильтр низких частот (ФНЧ). Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании.
АТХ с коррекцией коэффициента мощности
В новых источниках питания для ПК появляется дополнительный блок – корректор коэффициента мощности (ККМ). ККМ убирает появляющиеся погрешности мостового выпрямителя переменного тока и повышает коэффициент мощности (КМ).
Поэтому производителями активно изготавливаются БП с обязательной коррекцией КМ. Это означает, что ИП на компьютере будет работать в диапазоне от 300Вт и более.
В этих БП используют специальный дроссель с индуктивностью выше чем на входе. Такой ИП называют PFC или пассивным ККМ. Имеет внушительный вес из-за дополнительного использования конденсаторов на выходе выпрямителя.
Из недостатков можно выделить невысокую надежность ИП и некорректную работу с ИБП во время переключения режима работы «батарея/сеть».
Это связано с маленькой емкостью фильтра сетевого напряжения и в момент падения напряжения повышается ток ККМ, и в этот момент включается защита от короткого замыкания.
На двухканальном ШИМ-контролере
Часто используют в современных источниках питания для компьютера двухканальные ШИМ-контроллеры. Единственная микросхема способна выполнять роль преобразователя и корректора КМ, что сокращает общее количество элементов в схеме БП.
В приведенной схеме первая часть выполняет формирование стабилизированного напряжение +38В, а вторая часть является преобразователем, который формирует стабилизированное напряжение +12В.
Схема подключения блока питания компьютера
Для подключения блока питания к компьютеру следует выполнить ряд последовательных действий:
- установить БП в системный блок. Все эти действия нужно выполнять аккуратно, чтобы не задеть остальные комплектующие;
- закрепить БП к задней панели системного блока специальными винтами;
- подсоединить кабели питания ко всем устройствам находящимся в системном блоке (материнская плата, дисковод, видеокарта, винчестер). Особых предпочтений в порядке подключения нет, главное все сделать аккуратно и правильно.
Конструктивные особенности
Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. На задней его части расположен разъем под сетевой кабель и кнопка выключателя.
Кроме этого может находится еще на задней стенке БП и разъем для подключения монитора.
В различных моделях могут быть и другие разъемы:
- индикатор напряжения;
- кнопки изменения режима работы вентилятора;
- переключатель входящего напряжения;
- USB-порты, встроенные в БП.
В современных источниках питания для ПК реже устанавливают вентилятор на задней стенке, который вытягивал горячий воздух из БП. В замен этого решения начали использовать вентилятор на верхней стенке, который был больше и работал тише.
На некоторых моделях возможно встретить сразу два вентилятора. Из стенки, которая находится внутри системного блока, выходит провод со специальным разъемом для подачи тока на материнскую плату. На фото указаны возможные разъемы подключения и обозначение контактов.
Каждый цвет провода подает определенное напряжение:
- желтый — +12 В;
- красный — +5 В;
- оранжевый — +3,3 В;
- черный – заземление.
У различных производителей могут изменяться значения для этих цветов проводов.
Также есть разъемы для подачи тока комплектующим компьютера.
Параметры и характеристики
БП персонального компьютера имеет много параметров, которые могут не указываться в документации. На боковой этикетке указываются несколько параметров – это напряжение и мощность.
Мощность – основной показатель
Эта информация пишется на этикетке крупным шрифтом. Показатель мощности БП указывает на общее количество электроэнергии доступной для внутренних комплектующих.
Казалось бы, выбрать БП с требуемой мощностью будет достаточным просуммировать потребляемые показатели комплектующими и выбрать БП с небольшим запасом. Поэтому большой разницы между 200w и 250w не будет существенной.
Но на самом деле ситуация выглядит сложнее, потому что выдаваемое напряжение может быть разным — +12В, -12В и другим. Каждая линия напряжения потребляет определенную мощность. Но в БП расположен один трансформатор, который генерирует все напряжения, используемые ПК. В редких случаях может быть размещено два трансформатора. Это дорогой вариант и используется в качестве источника на серверах.
В простых же БП используется 1 трансформатор. Из-за этого мощность на линиях напряжений может меняться, увеличиваться при малой нагрузке на других линиях и наоборот уменьшаться.
Рабочие напряжение
При выборе БП следует обратить внимание на максимальные значения рабочих напряжений, а также диапазон входящих напряжений, он должен быть от 110В до 220В.
Правда большинство из пользователей на это не обращают своего внимания и выбирая БП с показателями от 220В до 240В рискуют к появлению частых отключений ПК.
Такой БП будет выключаться при падении напряжения, которые не редкость для наших электросетей.Превышение заявленных показателей приведет к выключению ПК, сработает защита. Чтобы включить обратно БП придется отключить его от сети и подождать минуту.
Следует помнить, что процессор и видеокарта потребляю самое большее рабочее напряжение в 12В. Поэтому следует обращать внимание на эти показатели.Для снижения нагрузки на разъемы, линию 12В разделяют на пару параллельных с обозначением +12V1 и +12V2. Эти показатели должны быть указаны на этикетке.
Советы по выбору источника
Перед тем как выбрать для покупки БП, следует обратить внимание на потребляемую мощность внутренними компонентами ПК.
Но некоторые видеокарты требуют особый потребляемый ток +12В и эти показатели следует учитывать при выборе БП. Обычно для ПК, в котором установлена одна видеокарта, достаточно источника с мощностью в 500вт или 600.
Также следует ознакомится с отзывами покупателей и обзорами специалистов о выбранной модели, и компании производителе. Лучшие параметры, на которые следует обратить внимание, это: мощность, тихая работа, качество и соответствие написанным характеристикам на этикетке.
Экономить при этом не следует, ведь от работы БП будет зависеть работа всего ПК. Поэтому чем качественнее и надежнее источник, тем дольше прослужит компьютер. Пользователь может быть уверен, что сделал правильный выбор и не беспокоится о внезапных выключениях своего ПК.
Источник: https://compsch.com/obzor/vidy-elektricheskix-sxem-bloka-pitaniya-kompyutera.html
Блок питания для компьютера: принцип работы, принципиальная схема и проверка его работоспособности
Сегодня комплектующие для десктопного ПК устаревают очень быстро. Единственным исключением является блок питания (БП). Конструкция этого устройства не претерпела серьезных изменений за последние 15 лет, когда на рынке появились БП форм-фактора ATX. Принцип работы и принципиальная схема блока питания для компьютера мало чем отличаются у всех производителей.
Типовая схема компьютерного блока питания стандарта ATX показана ниже. По своей конструкции это классический БП импульсного типа, основанный на ШИМ-контроллере TL 494. Сигнал к началу работы этого элемента поступает с материнской платы. До формирования управляющего импульса активным остается лишь источник дежурного питания, выдающий напряжение в 5 В.
Выпрямитель и ШИМ-контроллер
Чтобы было проще разобраться с устройством блока питания компьютера и принципом его работы, нужно рассмотреть отдельные структурные элементы. Начать стоит с сетевого выпрямителя.
Основная задача этого блока заключается в преобразовании переменного сетевого электротока в постоянный, который необходим для функционирования ШИМ-контроллера, а также дежурного источника питания. В состав блока входит несколько основных деталей:
- Предохранитель F1 – необходим для защиты БП от перегрузки.
- Терморезистор – он расположен в магистрали «нейтраль» и призван снижать скачки электротока, возникающие в момент включения ПК.
- Фильтр помех – в его состав входят дроссели L1 и L2, конденсаторы C1- C4, а также Tr1, имеющие встречную обмотку. Этот фильтр позволяет подавлять помехи, неизбежно возникающие при работе импульсного БП, могут негативно воздействовать на работу теле- и радиоаппаратуры.
- Диодный мостик – находится сразу за фильтром помех и позволяет преобразовать переменный электроток в постоянный пульсирующий. Для сглаживания пульсаций предусмотрен емкостно-индукционный фильтр.
На выходе из сетевого выпрямителя напряжение присутствует до того момента, пока БП не будет отключен от розетки. При этом ток поступает на дежурный источник питания и ШИМ-контроллер. Именно первый структурный элемент схемы представлен на рисунке.
Он представляет собой преобразователь малой мощности импульсного типа. В его основе лежит транзистор Т11, задачей которого является генерация питающих импульсов для микросхемы 7805.
После транзистора ток сначала проходит через разделительный трансформатор и выпрямитель, основанный на диоде D 24. Используемая в этом БП микросхема обладает одним довольно серьезным недостатком – высоким падением напряжения, что при больших нагрузках может вызвать перегрев элемента.
Основой любого преобразователя импульсного типа является ШИМ-контроллер. В рассматриваемом примере он реализован с помощью микросхемы TL 494.
Основная задача модуля ШИМ (широтно-импульсная модуляция) заключается в изменении длительности импульсов напряжении при сохранении их амплитуды и частоты.
Полученное выходное напряжение на импульсном преобразователе стабилизируется с помощью настройки длительности импульсов, которые генерирует ШИМ-контроллер.
Выходные каскады преобразователя
Именно на этот элемент конструкции ложится основная нагрузка. Это приводит к серьезному нагреву коммутирующих транзисторов Т2 и Т4. По этой причине они установлены на массивные радиаторы. Однако пассивное охлаждение не всегда позволяет справляться с сильным тепловыделением, все БП оснащены кулером. Схема выходного каскада изображена на рисунке.
Перед выходным каскадом расположена цепь включения БП, основанная на транзисторе Т9. При пуске блока питания на этот элемент конструкции напряжение в 5 В подается через сопротивление R 8. Это происходит после формирования сигнала к пуску ПК на материнской плате. Если возникли проблемы с работой источника дежурного питания, то БП может после пуска сразу отключиться.
Сейчас все производители используют практически аналогичные схемы блоков питания компьютеров. Вносимые ими изменения не оказывают серьезного влияния на принцип работы устройства.
Распиновка главного коннектора
Сначала БП форм-фактора ATX для соединения с системной платой оснащались разъемом на 20 пин. Однако совершенствование вычислительной техники привело к необходимости использовать дополнительно еще 4 контакта. Современные блоки питания могут оснащаться 24-пиновым разъемом в одном корпусе или иметь 20+4 пин. Все контакты коннекторов стандартизованы и вот основные из них:
- +3,3 В – питание материнской платы и центрального процессора.
- +5 В – напряжение необходимо для работы некоторых узлов системной платы, винчестеров и внешних устройств, подключенных к портам USB.
- +12 В – управляемое напряжение, используемое HDD и кулерами.
- -5 В – начиная с версии ATX 1.3 не используется.
- -12 В – сегодня применяется крайне редко.
- Ground – масса.
Распределение нагрузки и возможные неисправности
Напряжение, выдаваемое источником питания, предназначено для различных нагрузок.
Таким образом, в зависимости от конфигурации конкретного ПК, потребление энергии в каждой цепи источника питания может меняться.
Именно поэтому в технических характеристиках БП указывается не только общая мощность устройства, но и максимальное потребление электротока для каждого типа выходного напряжения.
При апгрейде «железа» ПК следует помнить об этом факте. Например, установка мощного современного видеоускорителя приводит к резкому повышению нагрузки в цепи 12 В. Чтобы ПК работал корректно, возможно потребуется и замена блока питания. Чаще всего неполадки с работой БП связаны со старением элементов его конструкции либо существенным недостатком мощности.
Не стоит забывать и о том, что перегрев выходного каскада может быть связан с накоплением большого количества пыли внутри блока питания. Электролитические конденсаторы, установленные в сетевом выпрямителе и выходных каскадах, больше других деталей склонны к старению.
В первую очередь это касается продукции малоизвестных брендов, использующих дешевые комплектующие. По сути, именно элементная база и качество деталей отличает хорошие устройства от дешевых.
Провести ремонт БП самостоятельно может только человек, имеющий определенный набор знаний в области электроники. Однако современные устройства, изготовленные известными брендами, отличаются высокой надежностью.
При соблюдении правил обслуживания ПК, проблемы с ними возникают очень редко.
Источник: https://220v.guru/elementy-elektriki/shemy/ustroystvo-i-principialnaya-shema-bloka-pitaniya-dlya-kompyutera.html
А вы знаете — как устроен блок питания компьютера?
Добрый день, друзья!
А вы хотели бы узнать, как устроен блок питания компьютера? Сейчас мы попытаемся разобраться в этом вопросе.
Для начала отметим, что компьютеру, как и любому электронному устройству, необходим источник электрической энергии. Вспомним, что бывают
Первичные и вторичные источники электропитания
Первичные — это, в частности, химические источники тока (элементы питания и аккумуляторы) и генераторы электрической энергии, находящиеся на электростанциях.
В компьютерах могут применяться:
- литиевые элементы напряжением 3 В для питания КМОП микросхемы, в которой хранятся установки BIOS,
- литий-ионные аккумуляторы (в ноутбуках).
Литиевые элементы 2032 питают микросхему структуру CMOS, хранящую настройки BIOS Setup компьютера.
Потребление тока при этом невелико (порядка единиц микроампер), поэтому энергии батареи хватает на несколько лет.
После исчерпания энергии такие источник энергии восстановлению не подлежат.
В отличие от элементов литий-ионные аккумуляторы являются возобновляемыми источниками. Они периодически то запасают энергию, то отдают ее. Сразу отметим, что любые аккумуляторы имеют ограниченное количество циклов заряд-разряд.
Но большая часть стационарных компьютеров питается не от аккумуляторов, а от сети переменного напряжения.
В настоящее время в каждом доме имеются розетки с переменным напряжением 220 В (в некоторых странах 110 — 115 В) частотой 50 Герц (в некоторых странах – 60 Герц), которые можно считать первичными источниками.
Но основные компоненты компьютера не могут непосредственно использовать такое напряжение.
Его необходимо преобразовать. Выполняет эту работу источник вторичного электропитания (народное название — «блок питания») компьютера. В настоящее время почти все блоки питания (БП) — импульсные. Рассмотрим более подробно, как устроен импульсный блок питания.
Входной фильтр, высоковольтный выпрямитель и емкостный фильтр
На входе импульсного БП имеется входной фильтр. Он не пропускает помехи, которые всегда есть в электрической сети, в блок питания.
Помехи могут возникать при коммутации мощных потребителей энергии, сварке и т.п.
В то же время он задерживает помехи и самого блока, не пропуская их в сеть.
Если быть более точным, помехи в БП и из него проходят, но достаточно сильно ослабляются.
Входной фильтр представляет собой фильтр нижних частот (ФНЧ).
Он пропускает низкие частоты (в том числе сетевое напряжение, частота которого равна 50 Гц) и ослабляет высокие.
Отфильтрованное напряжение поступает на высоковольтный выпрямитель (ВВ). Как правило, ВВ выполнен по мостовой схеме из четырех полупроводниковых диодов.
Диоды могут быть как отдельными, так и смонтированными в одном корпусе. Существует и другое название такого выпрямителя — «диодный мост».
Выпрямитель превращает переменное напряжение в пульсирующее, т. е. одной полярности.
Грубо говоря, диодный мост «заворачивает» отрицательную полуволну, превращая ее в положительную.
Пульсирующее напряжение представляет собой ряд полуволн положительной полярности. На выходе ВВ стоит емкостной фильтр — один или два последовательно включенных электролитических конденсатора.
Конденсатор — это буферный элемент, который может заряжаться, запасая энергию и разряжаться, отдавая ее.
Когда напряжение на выходе выпрямителя ниже некоей величины («провал»), конденсатор разряжается, поддерживая его на нагрузке. Если же оно выше, конденсатор заряжается, обрезая пики напряжения.
В курсе высшей математике доказывается, что пульсирующее напряжение представляет собой сумму постоянной составляющей и гармоник, частоты которых кратны основной частоте сети.
Таким образом, емкостный фильтр можно рассматривать здесь как фильтр нижних частот, выделяющий постоянную составляющую и ослабляющий гармоники. В том числе и основную гармонику сети — 50 Гц.
Источник дежурного напряжения
В компьютерном блоке питания имеется так называемый источник дежурного напряжения (+5 VSB).
Если вилка кабеля вставлена в питающую сеть, это напряжение присутствует на соответствующем контакте разъема блока питания. Мощность этого источника небольшая, он способен отдавать ток 1 — 2 А.
Именно этот маломощный источник и запускает гораздо более мощный инвертор. Если разъем блока питания вставлен в материнскую плату, то часть ее компонентов находится под напряжением + 5 VSB.
Сигнал на запуск инвертора подается с материнской платы. Причем для включения можно использовать маломощную кнопку.
В более старых моделях компьютеров устанавливались БП старого стандарта АТ. Они имели громоздкие выключатели с мощными контактами, что удорожало конструкцию. Использование нового стандарта АТХ позволяет «будить» компьютер одним движением или кликом «мышки». Или нажатием клавиши на клавиатуре. Это, конечно, удобно.
Но при этом надо помнить, что конденсаторы в источнике дежурного напряжения всегда находятся под напряжением. Электролит в них подсыхает, срок службы уменьшается.
Большинство пользователей традиционно включает компьютер кнопкой на корпусе, питая его через фильтр-удлинитель. Таким образом, можно рекомендовать после отключения компьютера исключать подачу напряжения на блок питания выключателем фильтра.
Выбор — удобство или надежность — за вами, уважаемый читатели.
Устройство источника дежурного напряжения
Источник дежурного напряжения (ИДН) содержит в себе маломощный инвертор.
Этот инвертор превращает высокое постоянное напряжение, полученное с высоковольтного фильтра, в переменное. Это напряжение понижается до необходимой величины маломощным трансформатором.
Инвертор работает на гораздо более высокой частоте, чем частота сети, поэтому размеры его трансформатора невелики. Напряжение со вторичной обмотки подается на выпрямитель и низковольтный фильтр (электролитические конденсаторы).
Напряжение ИДН должно находиться в пределах 4,75 — 5,25 В. Если оно будет меньше — основной мощный инвертор может не запуститься. Если оно будет больше, компьютер может «подвисать» и сбоить.
Для поддержания стабильного напряжения в ИДН часто используется регулируемый стабилитрон (иначе называемый источником опорного напряжения) и обратная связь. При этом часть выходного напряжения ИДН подается во входные высоковольтные цепи.
Заканчивая первую часть статьи, отметим, что для гальванической развязки входных и выходных цепей используется оптопара.
Оптопара содержит источник и приемник излучения. В блоках питания чаще всего используется оптопара, содержащая в себе светодиод и фототранзистор.
Инвертор в ИДН собран чаще всего на мощном высоковольтном полевом или биполярном транзисторе. Мощный транзистор отличается от маломощных тем, что рассеивает бОльшую мощность и имеет бОльшие габариты.
В этом месте сделаем паузу. Во второй части статьи мы рассмотрим основной инвертор и низковольтную часть компьютерного блока питания.
С вами был Виктор Геронда.
До встречи на блоге!
P.S. Фото кликабельны, кликайте, рассматривайте внимательно схемы и удивляйте знакомых своей эрудицией!
Источник: https://vsbot.ru/komputery/kak-ustroen-blok-pitaniya-computera.html
Устройство блока питания компьютера — Компьютерная техника
Страница создана: 2011-03-19, обновлена: 2017-10-27
Блок питания является действительно важнейшей деталью в компьютере! Всеобщая стабильность работы всего компьютера напрямую зависит от стабильности работы блока питания в наших ужасных электрических цепях.
задача блока питания, в принципе, достаточно проста, а именно ему нужно производить преобразование входного переменного напряжения 220В в несколько низковольтных, затем помогать в стабилизации их, а затем он подает их в нужные цепи компьютера. Однако, существует также ряд дополнительных требований, которые являются достаточно важными:
- он должен обеспечивать мощность, которая требуется для стабильной работы;
- он должен поддерживать удерживание выходных напряжений в пределах, которые были установлены и при различных уровнях нагрузки;
- он должен защищать от пожаров и электрических сбоев;
- рабочие шумы и температуры должны иметь низкий уровень.
Линейная и импульсная. Именно столько существует схем построения блоков питания.
Линейный блок питания
Простая и традиционная схема, включающая в себя входное напряжение, которое может подаваться на первичную обмотку понижающего трансформатора, а с вторичной обмотки напряжение, которое является пониженным, снимается и подается на выпрямитель, а уж потом только — на стабилизатор.
Линейный блок питания
Плюсы линейного блока питания:
- он достаточно прост;
- он стабилен;
- у него достаточно быстрая реакция на изменение нагрузки.
Минусы:
- силовой трансформатор слишком громоздок;
- выделение тепла происходит в значительных количествах;
- низкий КПД;
- к качеству входного напряжения слишком большая чувствительность.
Импульсный блок питания
Именно входное напряжение сети (~220V), которое является переменным, напрямую начинает подаваться на выпрямитель импульсного блока питания.
Импульсный блок питания
На выходе выпрямителя получается, что напряжение 300V является постоянным, и оно заводится в блок ключей, которые были построены на мощных транзисторах. Генератор, который работает на частоте 60кГц, управляет работой транзисторов.
На выходах блока ключей получается, что импульсы имеют свою последовательность, и они подаются на обмотку силового трансформатора, которая является первичной. На вторичной же обмотке силового трансформатора начинают формироваться базовые напряжения +5V и +12V, подающиеся на блок стабилизаторов и выпрямителей.
Готовые напряжения, которые являются стабилизированными, имеем на выходе стабилизатора-выпрямителя для питания компьютерных узлов.
Плюсы импульсного блока питания:
- высокий КПД (практически не греются транзисторы);
- он имеет слабую чувствительность к качеству входной сети;
- его размеры и масса достаточно малы.
Минусы:
- электрическая схема является достаточно сложной;
- блок электронного управления просто необходим.
А теперь подойдем к более подробному рассмотрению работы отдельных узлов импульсного блока питания.
Входной фильтр-выпрямитель
Фильтр, состоящий из цепей, которые являются индуктивно-емкостными, и они, в свою очередь, не могут пропускать сетевые помехи в блок и не позволяют «выйти» помехам, которые являются высокочастотными, в обратном направлении. Выпрямитель помогает преобразовать напряжение сети 220V, которое является переменным, в напряжение 300V, которое является постоянным, а затем начинает подавать его на блок управления и блок ключей.
Блок ключей
Этот блок, который состоит из транзисторов, управляемыми (открываются или закрываются) при помощи генератора. Из-за этого входное напряжение, которое является постоянным, может преобразоваться в последовательность импульсов (отсюда мы и имеем название «импульсный блок питания»).
Генератор
Импульсы генератора, которые являются управляющими, открывают транзисторы, и поэтому к силовому трансформатору, на его первичную обмотку начинает поступать напряжение. Питание генератор получается с блока управления.
Power On — сигнал материнской платы, из-за которого генератор может выключиться (транзисторы не смогу быть открытыми, а у сигналов импульсы не смогут подаваться на блок ключей), поэтому компьютер будет переходить в спящий режим.
В режиме обратной связи работает генератор, при этом он занимается получением сигналов с выходных блоков выпрямителя. Из-за изменений в данных сигналах генератор будет полностью помогать в регулировании времени состояния транзисторов блока управления, которое является открытым.
Силовой трансформатор
Импульсы, которые являются высокочастотными, могут подаваться с блока ключей на первичную обмотку силового трансформатора, а затем трансформатор начинает понижение входного напряжения и имеет затем уже две вторичных обмотки с напряжениями +5V и +12V. По размерам силовой импульсный трансформатор в несколько раз меньше трансформатора аналогичной мощности, который является низкочастотным.
Блок выходных выпрямителей и стабилизаторов
Напряжения +5V и + 12V, которые являются переменными, начинают подаваться на входы выпрямителей, формирующиеся при помощи базовых напряжений +5V; -5V; +12V; -12V. На базе канала +5V начинает формирование напряжение +3.3V. Затем эти напряжения начинают фильтроваться и стабилизироваться при помощи дросселя.
Блок управления
Блок дежурного напряжения (блок управления) всегда должен находиться под напряжением. Обесточивание блока можно произвести только при помощи отключения сетевого выключателя прямо на самом блоке питания, а если таковой отсутствует, то вытащить вилку сетевого шнура из розетки.
Дежурное напряжение +5VSTB, которое вырабатывает блок управления, начинает подаваться на материнскую плату, затем начинает обеспечение питанием генератора, включающийся (как уже говорили раньше) при помощи сигнала Power On с материнской платы.
Источник: http://sd-company.su/article/computers/block_power
Блок питания компьютера: что это и какие функции выполняет
Здравствуйте, друзья.
Об основных железках находящихся в системнике я уже описал, осталась только одна штука — питающая это всё безобразие :).
У большинства пользователей представления о том, зачем нужен блок питания компьютера, ограничиваются его необходимостью для подключения электроэнергии. Я предлагаю ближе познакомиться со своим железом, которое используется вами ежедневно, ведь блок питания играет в его работе важную роль.
Блоком питания называется источник электроэнергии (так же называемый адаптером питания), который выполняет одновременно три задачи:
- Преобразует переменный ток в постоянный номиналом 12, 5 и 3.3 В;
- Выступает стабилизатором электричества, чтобы при перепадах напряжения не перегорели дорогостоящие комплектующие вашего компьютера;
- Содержит в себе вентилятор, частично охлаждающий центральный процессор (если блок установлен сверху корпуса).
Существует два основных типа блоков питания ПК: линейный и импульсный. Первый выполняет лишь преобразование электроэнергии, а второй — еще и стабилизирует напряжение. Поэтому в современных компьютерах чаще встречается импульсный вариант.
Изнутри блоки выглядят примерно так:
Внутри находится импульсный трансформатор, конденсаторы выравнивающие ток, резисторы, дроссели, транзисторы и т.д. Подробную работу этого всего разберём как — нибудь в отдельном посте.
На сегодняшний основным форматом является форм — фактор ATX. В прошлом были формы типа AT, но сейчас они канули в лету. Так же есть блоки небольшого размера, типа как для ноутов, или для маленьких корпусов — SFX:
Защитные способности БП
Нынешние трансформаторы имеют множество схем защиты. Расскажу про основные из них:
- Когда напряжение падает или повышается более чем на 25%, срабатывает один из режимов соответственно: UVP (Under Voltage Protection) или OVP (Over);
- Чтобы не допустить короткого замыкания, имеется SCP (Short Circuit Protection) в виде плавкого предохранителя или цифровой схемы;
- От общей нагрузки по всем каналам призван уберечь режим OPP или OLP (Over Power Protection);
- Часто происходят сильные скачки напряжения? Не волнуйтесь. В случае необходимости сработает аварийная остановка работы компьютера благодаря OCP (Over Current Protection);
- Максимальной внутренней температурой БП является 50 °C, и если она выше нормы — срабатывает режим OTP (Over Temperature Protection);
- Отдельной микросхемой, которая чаще всего находится на одном из вентиляторов, является AFC (Automatic Control Fan), призванная регулировать его скорость;
- На среднее время безотказной работы указывает MTBF (Mean time Between Failures). Качественные модели способны прослужить более 100 тысяч часов.
Но эти защитные способности конечно есть не у всех девайсов. К примеру если вы купите какой — нибудь китайский, дешманский блок, то не о какой защите там скорее всего не может быть и речи
Здесь ещё стоит упомянуть о таком понятии как КПД, то есть какова эффективность отдачи тока при максимальных нагрузках. Для этого производители придумали так называемый сертификат означающий качество показателя КПД и назвали его «80 PLUS».
Скажу об этом коротко: выбирайте себе блок обязательно не ниже сертификата «80 PLUS Silver». А если уж денег не жалко то не ниже «80 PLUS Gold»
Разъемы БП
Первые линейки персональных компьютеров комплектовались блоками питания типа АТ, имевших только один разъем из двух половинок.
Но сейчас они вышли из употребления, и на замену им пришли усовершенствованные АТХ, оснащенные 24-контактным разъемом. Они необходимы для включения трансформатора.
Также ранее блоки питания имели разъемы Molex, служившие для подключения жестких дисков, винчестеров и картридеров. Однако на новых компьютерах их заменили усовершенствованными выходами SATA.
Для подключения процессора используется разъем питания CPU. А для таких мощных устройств как видеокарта и т. п. собственный похожий штекер:
При выборе БП обращайте внимание не только на наличие достаточного колличества коннекторов, но ещё и на охлаждение его самого.
Охлаждение бывает активным — это когда вентилятор крутиться постоянно, частично пассивным — это когда вентилятор начинает крутиться только при достижение определённый нагрузки по питанию. Естественно частично пассивные бесшумны до того момента пока вентиль не крутиться.
Бывают ещё и абсолютно пассивные, охлаждающиеся только лишь наличием радиаторов. Такие БП вообще не советую брать, потому что велик риск перегрева.
Трансформаторы для ноутбуков
Блоки питания для ноутбуков и других мобильных устройств служат не только для подачи электроэнергии в момент пользования гаджетом. Но и для обеспечения им автономной работы.
На сегодняшний день нет единого стандарта, которому должны соответствовать такие трансформаторы. Из-за этого БП не могут быть взаимозаменяемы. Все потому, что разные модели девайсов имеют индивидуальные характеристики:
- Используются различные разъемы для подключения зарядного устройства;
- Разнятся питающие напряжения. Как правило, это 18,5 В или 19 В, но можно встретить модели 15 или 16 В (чаще всего субноутбук). Вы владелец iBook? Тогда вам нужен БП на 24 В;
- Отличается выходная мощность. Старые модели ноутов выдают ток 3,16 А, а разные модели новых — от 3,42 A до 7,9 А.
Советую вам с особой внимательностью подходить к замене зарядного устройства для ноутбука. Они должны совпадать в показателях полярности, питающего напряжения и мощности. В противном случае ноут выйдет из строя.
Вроде бы всё. Тема про блок питания компьютера довольна таки серьёзная. Возможно что — то не договорил, пишите в коменты если вам есть что добавить.
До новых встреч друзья!
Заходите ещё.
Источник: http://profi-user.ru/blok-pitaniya-kompyutera/
Как устроен блок питания для компьютера и из чего состоит?
Привет, друзья! Несмотря на совершенство современных комплектующих то, без чего невозможна их нормальная работа – блок питания компьютера, из чего состоит этот узел и как работает, я расскажу в сегодняшней публикации.
Назначение блока питания
Даже полный «чайник» знает, что БП подает ток. Однако такое утверждение фактически почти ничего не объясняет. Блок питания выполняет три основные функции:
- Понижает напряжение в сети от 220 В (возможны и другие значения) до рабочего напряжения, необходимого для подачи к потребителям энергии – 3.3, 5 и 12 В, в том числе и с отрицательными значениями.
- Выпрямляет переменный ток с частотой 50 Гц, делая его постоянным.
- Стабилизирует рабочее напряжение.
Такие функции требуют соответствующей электрической схемы. БП для системного блока – вовсе не простая конструкция, как можно ошибочно подумать. Рассмотрим более детально его строение – какие логические блоки спрятаны там внутри, и как работает каждый из них.
Конструкционные компоненты
В состав блока питания включены три каскада – входной, выходной и преобразователь. Следует разобрать более детально, как устроен каждый и для чего он предназначен.
Входные цепи
Сюда входят такие блоки:
- Входной фильтр, который отсекает импульсные помехи, не давая им распространяться далее. Также он снижает разряд конденсаторов, который возникает при включении устройства в сеть.
- Корректор мощности снижает нагрузку на питающие цепи.
- Переменное напряжение постоянно трансформирует выпрямительный мост.
- Пульсации выпрямленного напряжения сглаживает конденсаторный фильтр.
- БП небольшой мощности, который выдает +5 В для поддержки дежурного режима материнки и +12 В для микросхемы преобразователя.
Преобразователь
Состоит из следующих элементов:
- Двух биполярных транзисторов, которые используются в качестве полумостового преобразователя.
- Схемы защиты от изменения питающих напряжений. В этом качестве обычно выступает специфическая микросхема, например SG6105 или UC
- Высокочастотного импульсного трансформатора, формирующий напряжения требуемого номинала.
- Цепей обратной связи, поддерживающих стабильное напряжение на выходе БП.
- Формирователя напряжения, реализованного на базе отдельного операционного усилителя.
Выходные цепи
Для их нормальной работы необходимы такие составляющие:
- Выходные выпрямители, которые используются для подачи напряжения 5 В и 12 В с положительными и отрицательными значениями, с помощью одних и тех же обмоток трансформатора.
- Дроссель групповой стабилизации. Сглаживает импульсы и перераспределяет энергию между остальными цепями.
- Фильтрующие конденсаторы, интегрирующие импульсы, необходимые для получения номинальных напряжений.
- Нагрузочные резисторы, обеспечивающие безопасную работу на холостом ходу.
Достоинства такой схемы
Такая логическая схема используется уже более десятилетия, что лишний раз подтверждает ее высокую эффективность. К неоспоримым достоинствам следует отнести:
- Относительная простота конструкции снижает количество необходимых компонентов, что позволяет снизить себестоимость устройства. Также это упрощает ремонт, в случае его необходимости.
- На выходе получается требуемый диапазон номинальных напряжений, с приемлемым качеством стабилизации, что требуется для нормальной работы комплектующих в составе системного блока.
- Так как основные потери энергии приходятся на процессы преобразования, можно достичь высокого КПД такого блока питания, вплоть до 90%.
- Небольшие габариты и масса, что позволяет собирать более компактные системные блоки.
- При внесении соответствующих конструкционных корректировок, такие БП можно использовать в сетях с широким диапазоном напряжения – например, 115 В в США или 220 В на постсоветском пространстве.
Некоторые особенности разных моделей
Эффективность устройства зависит не только от принципиальной схемы – они в большинстве случаев унифицированы, а какие‐то революционные нововведения внедряются редко.
Во многом на КПД и срок эксплуатации блока питания влияет качество комплектующих, которое может отличаться у разных производителей – от откровенного контрафакта у бюджетных моделей, сделанных в полукустарных условиях, до качественных микросхем, соответствующих всем принятым стандартам, которые используются в схемах вызывающих доверие брендов.
Естественно, при покупке нового БП, ни один продавец не даст сорвать пломбу и более тщательно покопаться во внутренностях устройства. Здесь на помощь нам приходит видеохостинг – на соответствующих каналах, которые несложно найти, блоггеры выкладывают процесс разборки и результаты тестов различных комплектующих.
Однако при этом следует прислушиваться только к мнению создателя ролика, которому вы доверяете и чья компетентность не вызывает сомнений.
Для более детального углубления в тему, советую ознакомиться с моими публикациями «сертификаты блоков питания» и «основные характеристики блока питания».
А в качестве возможной покупки, могу порекомендовать блок питания Chieftec 550W Retail CPS‐550S [FORCE] – надежное устройство с достаточной мощностью, не дорого и от хорошо зарекомендовавшего себя бренда.
Спасибо за внимание и до следующей встречи. Благодарю всех, кто делится моими статьями в социальных сетях.
С уважением, Андрей Андреев
Источник: https://infotechnica.ru/pro-kompyuteryi/o-blokah-pitaniya/kak-ustroen-iz-chego-sostoit/